
 

 

 

  
Abstract— This paper describes how damage propagation 

can be modeled within the modules of aircraft gas turbine 

engines. To that end, response surfaces of all sensors are 

generated via a thermo-dynamical simulation model for the 

engine as a function of variations of flow and efficiency of the 

modules of interest. An exponential rate of change for flow and 

efficiency loss was imposed for each data set, starting at a 

randomly chosen initial deterioration set point. The rate of 

change of the flow and efficiency denotes an otherwise 

unspecified fault with increasingly worsening effect. The rates 

of change of the faults were constrained to an upper threshold 

but were otherwise chosen randomly. Damage propagation was 

allowed to continue until a failure criterion was reached. A 

health index was defined as the minimum of several 

superimposed operational margins at any given time instant and 

the failure criterion is reached when health index reaches zero. 

Output of the model was the time series (cycles) of sensed 

measurements typically available from aircraft gas turbine 

engines. The data generated were used as challenge data for the 

Prognostics and Health Management (PHM) data competition 

at PHM’08. 
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I. INTRODUCTION 

ata-driven prognostics faces the perennial challenge of 

the lack of run-to-failure data sets. In most cases real-

world data contain fault signatures for a growing fault but no 

or little data capture fault evolution until failure.  Procuring 

actual system fault progression data is typically time 

consuming and expensive. Fielded systems are, most of the 

time, not properly instrumented for collection of relevant 

data. Those fortunate enough to be able to collect long-term 

data for fleets of systems tend to – understandably – hold the 

data from public release for proprietary or competitive 

reasons. Few public data repositories (e.g., [1]) exist that 

make run-to-failure data available. The lack of common data 

sets, which researchers can use to compare their approaches, 

is impeding progress in the field of prognostics. While 

several forecasting competitions have been held in the past 

(e.g., [2-7]), none have been conducted with a PHM-centric 

focus. All this provided the motivation to conduct the first 

PHM data challenge. The task was to estimate remaining life 

of an unspecified system using historical data only, 

irrespective of the underlying physical process.  

For most complex systems like aircraft engines, finding a 

suitable model that allows the injection of health related 

changes certainly is a challenge in itself. In addition, the 

question of how the damage propagation should be modeled 

within a model needed to be addressed. Secondary issues 

revolved around how this propagation would be manifested 

in sensor signatures such that users could build meaningful 

prognostic solutions.  

In this paper we first define the prognostics problem to set 

the context. Then the following sections introduce the 

simulation model chosen, along with a brief review of health 

parameter modeling. This is followed by a description of the 

damage propagation modeling, a description of the 

competition data, and a discussion on performance 

evaluation. 

II. PROGNOSTICS 

To avoid confusion, we define prognostics here 

exclusively as the estimation of remaining useful component 

life. The remaining useful life (RUL) estimates are in units of 

time (e.g., hours or cycles). End-of-life can be subjectively 
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determined as a function of operational thresholds that can 

be measured. These thresholds depend on user specifications 

to determine safe operational limits. 

Prognostics is currently at the core of systems health 

management. Reliably estimating remaining life holds the 

promise for considerable cost savings (for example by 

avoiding unscheduled maintenance and by increasing 

equipment usage) and operational safety improvements. 

Remaining life estimates provide decision makers with 

information that allows them to change operational 

characteristics (such as load) which in turn may prolong the 

life of the component. It also allows planners to account for 

upcoming maintenance and set in motion a logistics process 

that supports a smooth transition from faulty equipment to 

fully functional. Aircraft engines (both military and 

commercial), medical equipment, power plants, etc. are some 

of the common examples of these types of equipment.  

Therefore, it is not surprising that finding solutions to the 

prognostics problem is a very active research area. The fact 

that most efforts are focusing on data-driven approaches 

seems to reflect the desire to harvest low-hanging fruit as 

compared to model-based approaches, irrespective of the 

difficulties in gaining an access to statistically significant 

amounts of run-to-failure data and common metrics that 

allow a comparison between different approaches.  

Next we will describe how a system model can be used to 

generate run-to-failure data that can then be utilized to 

develop, train, and test prognostic algorithms. 

III. SYSTEM MODEL 

Tracking and predicting the progression of damage in 

aircraft engine turbo machinery has some roots in the work 

of Kurosaki et al. [8]. They estimate the efficiency and the 

flow rate deviation of the compressor and the turbine based 

on operational data, and utilize this information for fault 

detection purposes. Further investigations have been done by 

Chatterjee and Litt on on-line tracking and accommodating 

engine performance degradation effects represented by flow 

capacity and efficiency adjustments [9]. In [10], response 

surfaces for various sensors outputs are generated for a range 

of flow and efficiency values using a simulation model. 

These response surfaces are used to identify flow and 

efficiency health parameters of an actual engine by optimally 

matching the set of sensor readings with simulated sensor 

values, resulting in only one possible solution. The process 

chosen here continues on a similar path and follows closely 

the one described in [10]. 

An important requirement for the damage modeling 

process was the availability of a suitable system model that 

allows input variations of health related parameters and 

recording of the resulting output sensor measurements. The 

recently released C-MAPSS (Commercial Modular Aero-

Propulsion System Simulation) [11] meets these 

requirements and was chosen for this work. 

A. C-MAPSS 

C-MAPSS is a tool for simulating a realistic large 

commercial turbofan engine. The software is coded in the 

MATLAB
®
 and Simulink

® 
environment, and includes a 

number of editable input parameters that allow the user to 

enter specific values of his/her own choice regarding 

operational profile, closed-loop controllers, environmental 

conditions, etc. C-MAPSS simulates an engine model of the 

90,000 lb thrust class and the package includes an 

atmospheric model capable of simulating operations at (i) 

altitudes ranging from sea level to 40,000 ft, (ii) Mach 

numbers from 0 to 0.90, and (iii) sea-level temperatures from 

–60 to 103 °F. The package also includes a power-

management system that allows the engine to be operated 

over a wide range of thrust levels throughout the full range 

of flight conditions. 

In addition, the built-in control system consists of a fan-

speed controller, and a set of regulators and limiters. The 

latter include three high-limit regulators that prevent the 

engine from exceeding its design limits for core speed, 

engine-pressure ratio, and High-Pressure Turbine (HPT) exit 

temperature; a limit regulator that prevents the static pressure 

at the High-Pressure Compressor (HPC) exit from going too 

low; and an acceleration and deceleration limiter for the core 

speed. A comprehensive logic structure integrates these 

control-system components in a manner similar to that used 

in real engine controllers such that integrator-windup 

problems are avoided. Furthermore, all of the gains for the 

fan-speed controller and the four limit regulators are 

scheduled such that the controller and regulators perform as 

intended over the full range of flight conditions and power 

levels. The engine diagram in Figure 1 shows the main 

elements of the engine model and the flow chart in Figure 2 

shows how various subroutines are assembled in the 

simulation. 

 
Figure 1. Simplified diagram of engine simulated in C-MAPSS [11]. 
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Figure 2. A layout showing various modules and their connections as 

modeled in the simulation [11]. 



 

 

 

CMAPSS can be operated either in open-loop (without 

any controller) or in closed loop (with the engine and its 

control system) configurations. For the purpose of this paper, 

we worked exclusively with the closed-loop configuration. 

C-MAPSS has 14 inputs (Table 1) and can produce several 

outputs. Table 2 lists the outputs that were used for the 

challenge data. The inputs include fuel flow and a set of 13 

health-parameter inputs that allow the user to simulate the 

effects of faults and deterioration in any of the engine’s five 

rotating components (Fan, LPC, HPC, HPT, and LPT). The 

outputs include various sensor response surfaces and 

operability margins. A total of 21 variables out of 58 

different outputs available from the model were used in this 

study. C-MAPSS provides a set of Graphical User Interfaces 

(GUIs) to simplify input and output control for a variety of 

possible uses, including open-loop analysis, controller-

design, and simulation of response of the engine and its 

control system in a variety of situations. However, for the 

purpose of this data generation exercise, we ran the model in 

batch-mode without using the GUIs. 

Table 1. C-MAPSS inputs to simulate various degradation scenarios in any 

of the five rotating components of the simulated engine. For example, to 

simulate HPC degradation HPC flow and efficiency modifiers were used 

(highlighted in gray). 

Name Symbol 

Fuel flow  Wf 

Fan efficiency modifier fan_eff_mod 

Fan flow modifier fan_flow_mod 

Fan pressure-ratio modifier fan_PR_mod 

LPC efficiency modifier LPC_eff_mod 

LPC flow modifier LPC_flow_mod 

LPC pressure-ratio modifier LPC_PR_mod 

HPC efficiency modifier HPC_eff_mod 

HPC flow modifier HPC_flow_mod 

HPC pressure-ratio modifier HPC_PR_mod 

HPT efficiency modifier HPT_eff_mod 

HPT flow modifier HPT_flow_mod 

LPT efficiency modifier LPT_eff_mod 

HPT flow modifier LPT_flow_mod 

 
Table 2. C-MAPSS outputs to measure system response. Margins were used 

for health index calculation only and were not available to the participants 

explicitly.  

Symbol Description                                    Units 

Parameters available to participants as sensor data 

T2 Total temperature at fan inlet °R 

T24 Total temperature at LPC outlet °R 

T30 Total temperature at HPC outlet °R 

T50 Total temperature at LPT outlet °R 

P2 Pressure at fan inlet psia 

P15 Total pressure in bypass-duct psia 

P30 Total pressure at HPC outlet psia 

Nf Physical fan speed rpm 

Nc Physical core speed rpm 

epr Engine pressure ratio (P50/P2) -- 

Ps30 Static pressure at HPC outlet psia 

phi Ratio of fuel flow to Ps30 pps/psi 

NRf Corrected fan speed rpm 

NRc Corrected core speed rpm 

BPR Bypass Ratio -- 

farB Burner fuel-air ratio -- 

htBleed Bleed Enthalpy -- 

Nf_dmd Demanded fan speed rpm 

PCNfR_dmd Demanded corrected fan speed rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s 

   

Parameters for calculating the Health Index  

T48 (EGT) Total temperature at HPT outlet  °R 

SmFan Fan stall margin -- 

SmLPC LPC stall margin -- 

SmHPC HPC stall margin -- 

B. Response Surfaces 

To ensure that the output of the model was producing 

correct results, we first generated response surfaces for 

sensed outputs and operability margins from C-MAPSS as a 

function of flow and efficiency for specific modules. These 

were compared with those published by Goebel et al. [10]. 

Although it was not expected that the units would match (in 

fact, none were revealed in [10]), it was expected that the 

qualitative response should be similar. For instance, with an 

increase in flow and efficiency, the response surface behaved 

in a similar fashion as obtained from the real aircraft engine 

used in [10]. For each module in the gas path (HPC, HPT, 

and LPT), the efficiencies and flows were incrementally 

changed and C-MAPSS was then run under different cruise 

conditions randomly chosen at each time step. Some 

resulting HPC module response surfaces for the high 

pressure compressor stall margin and the exhaust gas 

temperature (EGT) are shown in Figure 3 and Figure 4, 

respectively.  
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The range of the flow and efficiency loss is the same in all 

figures. Response surfaces for the other modules’ sensors 

and operability margins were also generated using the same 

process and verified. 

Figure 3. Response surface of HPC stall margin as a function of 

efficiency and flow losses simulating degradation in HPC module. 
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Figure 4. Response surface for Exhaust Gas Temperature (EGT) as a 

function of efficiency and flow losses. 

IV. DAMAGE PROPAGATION MODELING 

Having decided on the system model, the next hurdle is to 

model the propagation of damage. Common models used 

across different application domains include the Arrhenius 

model, the Coffin-Manson mechanical crack growth model, 

and the Eyring model (for more than three stresses or when 

the above models are not satisfactory) [12]. These models 

come in numerous variations that will not be discussed here.  

A. Arrhenius 

The Arrhenius model has been used for a variety of failure 

mechanisms. Traditionally, it has been applied to those that 

depend on chemical reactions, diffusion processes or 

migration processes. While this covers many of the non-

mechanical (or non-material fatigue) failure modes that cause 

electronic equipment failure, lately, variations of the 

Arrhenius equation have also been employed for mechanical 

and other non-traditional applications. The operative 

equation is: 

kT

H

f Aet

∆

= ,                                     (1) 

where 

tf  is the time to failure, 

T is the temperature at the point when the failure 

process takes place, 

k is Boltzmann's constant, 

A is a scaling factor, and  

∆H is the activation energy. 

B. Coffin-Mason Mechanical Crack Growth Model 

A model more typically applied to mechanical failure, 

material fatigue or material deformation is the (modified) 

Coffin-Manson model. It has been successfully used to 

model crack growth in solder and other metals due to 

repeated temperature cycling as equipment is turned on and 

off. The operative equation is  

( )maxTGTAfN f

βα −− ∆= ,                               (2) 

where 

Nf is the number of cycles to failure, 

A is a scaling factor, 

f  is the cycling frequency, 

∆T is the temperature range during a cycle, 

G(Tmax) is an Arrhenius term evaluated at the maximum 

temperature reached in each cycle, 

α is the cycling frequency exponent, and 

β is the temperature range exponent.  

C. Eyring Model 

The Eyring Model originates in chemical reaction rate 

theory and has a theoretical basis in chemistry and quantum 

mechanics. It describes how time to failure varies with stress. 

The base model includes temperature and can be expanded 

to include other relevant stresses. The temperature term by 

itself is very similar to the Arrhenius empirical model, 

explaining why that model has been so successful in 

establishing the connection between the ∆H parameter and 

the quantum theory concept of "activation energy needed to 

cross an energy barrier and initiate a reaction". 

The model for temperature and additional stress terms 

takes the general form:   
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where 

 tf  is the time to failure, 

α, ∆H, A, B, C, D, and E are constants that 

determine acceleration between stress 

combinations,  

S1 and S2 are relevant stresses (e.g., some function 

of voltage or current), 

T is temperature in degrees Kelvin, and 

k is the Boltzmann’s constant. 

The general Eyring model includes terms that have stress 

and temperature interactions. A disadvantage of the Eyring 

model is that it has a relatively large number of parameters 

that need to be determined. 

D. Damage Propagation Model for the Challenge Problem 

Common to all degradation models is the exponential 

behavior of the fault evolution. This and the observation of 

similar degradation trends in practice [10] motivated our use 

of an exponential term while modeling changes of health 

parameters in C-MAPSS. For the purpose of a physics-

inspired data-generation approach, we assume a generalized 

equation for wear, w = Ae
B(t)

, which ignores micro-level 

processes but retains macro-level degradation characteristics. 

Assuming further an upper wear threshold, thw, that denotes 

an operational limit beyond which the component/subsystem 

cannot be used, the generalized wear equation can be 

rewritten as a time varying health index, h(t), by subtracting 

wear from the upper wear threshold and normalizing it with 

respect to the upper wear threshold as h(t) = 1 - Ae
B(t)

/ thw. 

Recasting parameter A/thw = e
a
 and expressing B(t) = t

b
, the 

health equation can be written as 



 

 

 

 }exp{1)( batth −= .  (4) 

Generally, the system will be observed with some non-

zero initial degradation, d, (allowing the data-generation 

process to start at an arbitrary point in the wear-space) which 

will be modeled as an additive term to yield 

}exp{1)( batdth −−= . (5) 

The health index can be used to model different 

phenomena within a subsystem. Specifically, for aircraft 

engine modules like the compressor and turbine sections, the 

health is described both by efficiency (e) and flow (f). 

Trajectories for flow and efficiency vary for different fault 

modes [4] and are modeled as separate health related indices 

as shown below.  
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The terms e(t) and f(t) are then aggregated to form the 

overall health index H(t), the engine simulation response to 

the given input values.   

( ))(),()( tftegtH =                               (7) 

where, the function g is the minimum of all operative 

margins considered (here those for fan, HPC, HPT, and 

EGT), i.e. 

( ) ( )EGTHPTHPCFan mmmmtfteg ,,,min)(),( = ,         (8) 

where, the margins m in turn are functions of efficiency 

e(t) and flow f(t). Calculation of the health index is further 

discussed in section V.D 

V. APPLICATION SCENARIO 

The scenario developed for the challenge data tracks a 

number of aircraft engines throughout their usage history. A 

particular engine unit may be employed under different flight 

conditions from one flight to another. Depending on various 

factors the amount and rate of damage accumulation will be 

different for each engine. It is assumed that the amount of 

damage accumulated during a particular flight will not be 

directly quantifiable solely based on flight duration and flight 

conditions, and hence, one must rely on information 

extracted from sensor data collected during each flight. This 

scenario models engine performance degradation due to wear 

and tear based on the usage pattern of the engines and not 

necessarily due to any particular fault mode. Therefore, 

sudden degradation during a flight is rather unlikely.  This 

allows us to take one measurement snapshot per flight to 

characterize the engine health during or right after that flight. 

Further, the effects of between-flight maintenance have not 

been explicitly modeled but have been incorporated as the 

process noise. This allows the engine performance 

parameters (flow and efficiency) to improve within allowable 

limits at any point and hence the loss in efficiency or flow is 

not locally monotonic (see Figure 5).  

In order to simulate the scenario explained above we 

needed to address several issues in order to make it more 

realistic. Some of these issues and their resolutions are 

discussed next. 
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Figure 5. Performance parameters like efficiency and flow may not 

change monotonically to model process noise that also incorporates 

between flight maintenance operations, which may lead to improved 

performance in subsequent flights. 

 

A. Initial Wear 

Initial wear can occur due to manufacturing inefficiencies 

and are commonly observed in real systems. Although it is 

not considered abnormal, it can make a difference in useful 

operational life of a component. Initial wear can also be 

modeled by variations in flow and efficiencies of the various 

modules, although the magnitude of such variations is 

relatively low. Chatterjee and Litt [9] give examples for the 

degree of wear that an engine might experience with 

progressive usage. These numbers were used as reference 

values for the challenge data and are recited in Table 3 for 

reference. 

Table 3. Engine wear as manifested in flow and efficiency changes [9]. 

  Initial 

Wear (%) 

Wear 3000 

Cycles (%) 

Wear 6000 

Cycles (%) 

Fan_Efficiency - 0.18 - 1.5 - 2.85 

Fan_Flow - 0.26 - 2.04 - 3.65 

LPC_Efficiency - 0.62 - 1.46 - 2.61 

LPC_Flow - 1.01 - 2.08 - 4.00 

HPT_Efficiency - 0.48 - 2.63 - 3.81 

HPT_Flow + 0.08 + 1.76 + 2.57 

LPT_Efficiency - 0.10 - 0.54 - 1.08 

LPT_Flow + 0.08 + 0.26 + 0.42 

 

B. Noise 

Characterizing noise in a system may be a non-trivial 

undertaking. Of various sources, the main sources of noise 

while assessing the true state of system’s health are 

manufacturing and assembly variations, process noise (due to 

factors not taken in to account while modeling the process), 

and measurement noise to name a few important ones. These 

noise sources introduce their respective contributions at 

different stages of the process and a combined effect is 

observed in the sensor measurements at the end. A simple 

approach to model this combined effect is to use 

approximate models (e.g. random noise models) [13, 14]. In 

other cases sophisticated noise model identification 



 

 

 

techniques may be employed [15] if real data are available 

for such analyses. In both situations a PHM practitioner is 

faced with characterizing and de-noising tasks before 

developing diagnostics or prognostics algorithms.  

In this study, since there was no real data available to 

characterize true noise levels, simplistic normal noise 

distributions were assumed based on information available 

from the literature [13, 16-18]. However, to make the signal 

noise non-trivial, mixture distributions were used and all of 

these noise sources were combined to present similar 

challenges in a realistic manner. Since any degradation is 

modeled by varying (generally decreasing) the efficiency and 

flow parameters for the engine, the initial wear due to 

manufacturing and assembly variations was modeled by 

selecting initial values, e0 and f0,  for e and f parameters (eq. 

6) from a random distribution, such that the maximum initial 

deterioration is bounded within 1% degradation of the 

healthy condition as cited in [14]. Therefore, each health 

index trajectory starts with a number between 1 and 0.99. 

To model the process noise, first the degradation 

trajectory parameters, ak and bk, corresponding to a unit 

under test k were chosen from a normal distribution. 

Together with e0 and f0, these parameters define a 

deterministic trajectory for degradation for a particular 

engine. This trajectory was then masked by a mixture of two 

random distributions with slightly different variances. It has 

been shown that mixture noise models are more difficult to 

characterize even if they consist of simple individual 

components [19]. This contaminated trajectory was fed to 

the engine model simulation and corresponding sensor 

outputs listed in Table 2 were collected after the system 

response reached a steady state. This way, the input process 

noise gets filtered through system dynamics and overall 

effect is observed in the output. Lastly, a random 

measurement noise component was added to all output 

channels in order to impose sensor noise. This multistage 

noise contamination resulted in complex noise characteristics 

often observed in real data and posed a similar challenge in 

front of competition participants to carry out appropriate de-

noising operations. 

C. Data Generation 

The process for using the model was as follows: 

1. Choose initial deterioration (f0, e0). 
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2. Impose an exponential rate of change for flow and 

efficiency loss for each data set, denoting an 

otherwise unspecified fault with increasingly 

worsening effect as described in equation (4). This 

results in the overall health index, H(t)=g(e(t), f(t)), 

varying as a function of time. The randomly chosen 

direction and evolution of faults is constrained by  
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3. Stop when health H= 0 (this is our failure criterion). 

4. Superimpose measurement noise to the output data. 

The output is a time series (cycles) of observables (Nf, 

Nc, wf, …) at cruise snapshots that were produced by 

modifying flow and efficiencies of the HPC module from 

initial settings (indicating normal deterioration) to values 

corresponding to failure threshold. Degradation of other 

modules was not included intentionally in the challenge data. 

D. Health Index Calculation 

The safe operation region for an engine is determined via 

operability margins - how far the engine is operating from 

various operational limits like stall and temperature limits. 

These margins can be calculated by computing the distance 

between current engine state and pre-defined limits. Among 

the margins considered, some are directly measurable, such 

as core speed limits and upper EGT thresholds. Others are 

“virtual” margins established through simulation.  Each of 

these margins are normalized to the range [0,1], where one 

signifies a perfectly healthy system and zero denotes a 

system whose stall margin has reduced by a specified limit. 

For the challenge data this limit was set at 15% for HPC, 

LPC and fan stall margins and about 2% for the EGT 

margin. The underlying premise is that if one engine with 

certain e and f pairing violates either one of operational 

margins under any possible operational conditions, such as 

hot day take off, maximum climb, or cruise, its health index 

would be zero. Otherwise, whichever normalized margin is 

lower would be its current health index. As shown in Figure 

6, these margins change as a function of operational 

conditions (e.g. throttle resolver angle (TRA), altitude, 

ambient temperature, etc.). Therefore, the health index must 

be adjusted according to operational condition as well. 
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Figure 6. Stall margins vary as a function of operational conditions (TRA in 

this example). 

For the challenge data set six different flight conditions 

were simulated that comprised of a range of values for three 

operational conditions: altitude (0-42K ft.), Mach number (0-



 

 

 

0.84), and TRA (20-100). Furthermore, these margins 

change as system degradation takes place. If system 

degradation is plotted on flow-efficiency axes, various 

margins indicating the deterioration can be depicted as 

shown in Figure 7 and Figure 8. A threshold boundary 

separates the failure region for respective margins. 

Depending on the direction of the failure evolution trajectory 

(simulated by changing e and f parameters) a threshold may 

or may not be crossed. Therefore, the overall health index is 

determined by the margin that approaches the corresponding 

limit first. For instance, in the following figures, health index 

is determined by increasing EGT (decreasing EGT margin) 

as compared to HPC stall margin for all three degradation 

trajectories. Each degradation trajectory was simulated until 

the health index reached zero. 
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Figure 7. Fault propagation trajectories on HPC stall margin contour map. 
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Figure 8. Fault propagation trajectories on EGT contour map with failure 

threshold. 

VI. COMPETITION DATA 

The objective was to generate train, test, and validation 

data sets for development of data-driven prognostics. To that 

end, a reasonably large number of trajectories were created 

from C-MAPSS that had the following properties: 

1) Simulation of degradation in HPC module under 6 

different combinations of Altitude, TRA, and Mach 

number operational conditions. Sensed margins (fan, 

HPC, LPC and EGT) were used to compute health index 

to determine simulation stopping criteria. 

2) Time series of observables including operational 

variables (see Table 1 and Table 2), that change from 

some undefined initial condition to a failure threshold. 

Participants were not given access to the health index 

explicitly and were expected to infer it from the given 

sensed variables. 

3) Division of data into training set, test set, and validation 

set. The training set had trajectories that ended at the 

failure threshold while the test and validation sets were 

pruned to stop some time prior to the failure threshold. 

4) The range of RUL variation was expanded for the 

validation set to test robustness of the algorithms trained 

on test data set (a condition that was not announced to 

the participants). The test data set RULs ranged between 

10 and 150 cycles, whereas validation RULs ranged 

between 6 and 190 cycles. However, all other 

characteristics like variation in initial wear, noise levels 

and degradation parameters spread remained changed. 

Participants of the challenge were then given details of the 

scoring function. They could submit their test set results in 

vector form through a web site where scores were 

automatically calculated and posted back to the participants, 

allowing them to improve their algorithms. To avoid over-

fitting to the test data, the validation set was withheld and 

published later, without feedback of the score until after the 

competition had closed. 

VII. PERFORMANCE EVALUATION 

Performance evaluation is concerned with employing 

metrics that help assess if the prognosis meets specifications 

for the task at hand. In PHM context, since the key aspect is 

to avoid failures, it is generally desirable to predict early as 

compared to predicting late. However, in specific situations 

where failures may not pose life threatening situations and 

early predictions may instead involve significant economic 

burden, this equation may change and one may not prefer 

conservative predictions. Hence, a performance evaluation 

system should reflect such characteristics to meet specific 

requirements. 

For an engine degradation scenario an early prediction is 

preferred over late predictions. Therefore, the scoring 

algorithm for this challenge was asymmetric around the true 

time of failure such that late predictions were more heavily 

penalized than early predictions. In either case, the penalty 

grows exponentially with increasing error. The asymmetric 

preference is controlled by parameters a1 and a2 in the 

scoring function given below (eq. 11) and Figure 9 shows the 

score as a function of the error.  
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where 

  s is the computed score, 

  n is the number of UUTs, 

  d = 
RULRUL tt −ˆ  (Estimated RUL – True RUL), 

  a1 = 10, and a2 = 13. 
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Figure 9. Score as a function of error. 

Asymmetric scoring functions like this capture the 

preference for early prediction pretty well and can be 

appropriately tuned to quantify the extent of such preference.  

While evaluating the results, it was realized that this 

prognostics metric can be further enhanced in various ways. 

It must be noted that predicting farther into the future is more 

difficult than predicting at a time closer to the end of life. 

Furthermore, it is more important to weigh accuracy of 

RULs higher when one is closer to the end of life. Keeping 

these thoughts in mind it may be desirable to assign higher 

weights for cases with shorter true RULs. Another 

characteristic of such datasets is that the performance of an 

algorithm is evaluated from multiple units under test 

(UUTs), e.g., in fleet applications. Since the metric is a 

combined aggregate of performance for individual UUTs, an 

additional correlation metric should be employed to ensure 

that an algorithm consistently predicts well for all cases as 

against predicting well for some and poorly for the rest. This 

idea is illustrated in Figure 10 and Figure 11 shows a 

simplified asymmetric scoring function used for this 

illustration.  

The various axes shown in Figure 11 show six different 

cases of prognostics algorithm outputs. Each axis shows 

estimated RULs and the corresponding true RULs for four 

UUTs. A simple asymmetric function (see Figure 10) is used 

to compute scores from RUL predictions for each UUT. As 

shown, each of these six cases produces an equal aggregated 

score of six. Clearly one can further differentiate in the 

output performance based on the suggested correlation 

metric. In some applications a higher correlation score may 

be preferred over lower aggregated scores, as a higher 

correlation may indicate a bias in the algorithm output that 

can be accordingly adjusted.  
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Figure 10. A simplified asymmetric scoring function chosen for illustration 
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Figure 11. Scenarios illustrating various cases where error based aggregated 

scores may be same but the correlation score distinguishes further between 

different algorithms. 

These suggestions are just to illustrate the point that there 

may be more modifications possible depending on specific 

applications and requirements and one must adapt 

accordingly. A comprehensive review of prognostics metrics 

is given in [20]. 

VIII. CONCLUSION 

This paper has described how damage propagation can be 

modeled in various modules of aircraft gas turbine engines 

for developing and testing prognostics algorithms. A 

publically available aero-propulsion system simulator, C-

MAPSS, was used in this study. Various assumptions and 

settings have been provided that were used to generate data 

for the PHM competition at the first international conference 

on prognostics and health management. Although, the data 

for the competition consisted of a subset of various possible 

conditions and settings, an insight into other possibilities can 

be easily derived. Later, a brief discussion has been provided 

on the performance evaluation of prognostics algorithms and 

the aspects of the performance metrics that may be desirable 

in a PHM application. 
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